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Mathematical models are increasingly used in life sciences. However, contrary to other disci-
plines, biological models are typically over-parametrized and loosely constrained by scarce
experimental data and prior knowledge. Recent efforts on analysis of complex models have
focused on isolated aspects without considering an integrated approach—ranging from
model building to derivation of predictive experiments and refutation or validation of
robust model behaviours. Here, we develop such an integrative workflow, a sequence of
actions expanding upon current efforts with the purpose of setting the stage for a method-
ology facilitating an extraction of core behaviours and competing mechanistic hypothesis
residing within underdetermined models. To this end, we make use of optimization search
algorithms, statistical (machine-learning) classification techniques and cluster-based analysis
of the state variables’ dynamics and their corresponding parameter sets. We apply the work-
flow to a mathematical model of fat accumulation in the arterial wall (atherogenesis), a
complex phenomena with limited quantitative understanding, thus leading to a model pla-
gued with inherent uncertainty. We find that the mathematical atherogenesis model can
still be understood in terms of a few key behaviours despite the large number of parameters.
This result enabled us to derive distinct mechanistic predictions from the model despite the
lack of confidence in the model parameters. We conclude that building integrative workflows
enable investigators to embrace modelling of complex biological processes despite uncertainty
in parameters.
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1. INTRODUCTION

The notion that to understand a phenomenon in nature
requires a mathematical model originates from ancient
thinkers, including Aristotle and Plato, but not realized
until the work of Isaac Newton in the seventeenth cen-
tury. This mode of thinking has been instrumental for
the success of physics whereas the corresponding math-
ematical formalization of the life sciences only began
during the second half of the twentieth century. This
divide is in part due to the major difference between phy-
sics and biology in our limited understanding of biological
processes from first principles. Consequently, models cap-
turing events within and between cells are therefore by
necessity plagued with uncertainty with respect to
model structure and parameter values. However, the
rise of mathematical modelling within the life sciences
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during the last two decades has largely focused on formu-
lating models and their analytical or numerical solution.
The bearing of mathematical modelling for medicine and
biology has not reached its full potential chiefly because
of the difficulty to have confidence in models due to
their inherent uncertainty. Such model ambiguity is as
a rule reflected in a large number of parameters not con-
strained by experimental data. Hence, there is an urgent
need to develop efficient workflows on how to analyse
such over-parametrized models to develop predictive
mechanistic hypotheses. This is a central challenge
to address in order to increase the confidence in
mathematical modelling within the life sciences.

In recent years, several approaches have been devel-
oped in order to standardize the analysis of such
models and the generation of useful predictions. A few
groups have developed an ensemble approach towards
the analysis of over-parametrized models under (com-
parably) scarce experimental data. Battogtokh et al. [1],
in the context of chemical reaction networks, proposed
a methodology based on a statistical ensemble of ‘all’
parameter sets consistent with existing profiling data
(feasible parameter sets, FPSs). Their methodology
This journal is q 2011 The Royal Society
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enabled a classification of parameters either as ‘well’ or
‘poorly’ specified and thereby allowed the investigator
to identify the experiments which maximally reduce
the parameter uncertainty. In parallel, Brown &
Sethna [2] developed a statistical ensemble approach to
analyse the collective properties of sloppy models, i.e.
models with (i) poorly known parameters, (ii) simplified
dynamics, and (iii) uncertain connectivity. Soft and stiff
directions were identified by examining the sensitivity of
model behaviour to parameter changes. Recently, Guten-
kunst et al. [3] discovered that most biological models are
characterized by a ‘sloppy’ spectrum of parameter sensi-
tivities. In these ensemble approaches, the parameter
space (PS) was explored to find FPSs by combination
of random walks and gradient optimization methods.
However, only Battogtokh et al. [1] went beyond an
optimization analysis and derived specific predictions
about the behaviour. Nevertheless, a parameter uncer-
tainty analysis needs to be linked with hypotheses
generation by a supervised analysis or by unsupervised
exploration. Model checking (Mc) is an example of a
supervised approach where the model is interrogated to
formally verify a system’s behaviour with respect to a
set of properties [4]. An inherent limitation of an Mc
analysis is that the questions need to be predefined by
the researcher [5,6]. A supervised approach considers
the analysis of the observed behaviours of the model. A
recent framework surpasses this limitation [7], and
Cedersund et al. [8] consider an automated, non-super-
vised approach that searches for ‘core behaviours’,
defined as hypotheses that cannot be rejected by any
FPS. A clever combination of experiments, model-
based data analyses and theoretical predictions allows
the formulation of those hypotheses. From our point of
view, this approach presents the first prediction-oriented
model-based research for over-parametrized models.

Nevertheless, parameter uncertainty is only part of the
problem and model uncertainty must also be considered.
Kuepfer et al. [9] extend the ‘ensemble framework’ from
parameters to models by developing a library of mechan-
istically alternative dynamic models to unravel key
operating principles in the target of the rapamycin path-
way of Saccharomyces cerevisiae. Their analysis considers
a core model and several ‘local’ expansions around the
core model. Then experimental data are used in each
model to (i) solve the parameter fitting problem and (ii)
to rank the different models based on their prediction
power. Interestingly, this approach considers unique par-
ameter sets for each model considered; thus omitting
the ‘parameter ensemble’ idea. A study of possible
parameter values can provide information on which
mechanisms may, must and cannot be significantly
active during a specific time-scale [8,10]. This approach
can be complemented by using formal methods for redu-
cing the complexity of models such as those shown in
[9,11,12]. However, the application of such approaches
has so far been limited to small models and not to
models with hundreds of state variables (SVs) and
parameters [13].

Taken together all these efforts bring us to the idea
and necessity of developing a workflow which enables
the generation of competing biological hypotheses
through a modelling approach which captures a
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complex biological process. We propose a workflow
applying to a case study that shows how a large and
complex model can be reduced and simplified to extract
the most biologically relevant information given the
scarcity of biological data available. We make use of
the parameter ensemble approach but we extend it by
combining it together with a behaviour ensemble
approach. Our workflow therefore integrates and
extends the methods which are available for model
analysis and behaviour extraction. We make use of
optimization procedures, statistical (machine-learning)
techniques and cluster-based analysis of the SVs’
dynamics and the parameter sets. As a case study, we
apply the methodology to a time-dependent systems
biology mark-up language (SBML) encoded disease
model that captures the initial plaque growth over
time in the arterial wall (atherogenesis), hence referred
to as the A model. Our A model is encoded in an SBML
format [14]; it will be publicly available and its identi-
fier is MODEL1002160000 at http://www.ebi.ac.uk/
biomodels-main. This workflow has also been applied
in computational neuroscience as a tool (i) to answer
a specific question in selective attention by exploring
the feasible PS [15]; and (ii) to find different qualitative
behaviours [16] in a working memory model [17].

Section 1 of the paper presents an overview of the
work-flow. The subsequent sections develop the model
analysis in detail where each step of the workflow is
illustrated by the analysis of the A model. The final sec-
tion presents the conclusions regarding the utility and
possible extensions of the workflow.
2. WORKFLOW: A TOOL CONFIGURING
MODEL ANALYSIS AND HYPOTHESES
GENERATION

The notion of workflow is used here as an abstracted
sequence of operations aiming to extract hypotheses
from over-parametrized models having large number
of under-determined parameters relative to the
available prior knowledge and experimental data.

Generically, we consider a model M, which is defined
by a set of parameters p; each parameter p [ p is
bounded inside a range. Within PS, we consider a
binary classification of the parameter values as feasible
and not-feasible, where ps [ PS is feasible if its associated
behaviour agrees with the experimental data. FPS
denotes the set of feasible parameter sets. However, differ-
ent facets of ps [ PS can be studied such as ‘parameter
values’; secondly, ‘behaviour-of-state-variables’ i.e. the
trajectory of the model; and finally the ‘sensitivity charac-
teristics’. The study of parameter values can be focused on
elucidating the mathematical characteristics of FPS (i.e. is
it convex? see [18,19]), whereas the sensitivity analysis can
identify the sloppiness and stiffness directions in FPS
(see [3]). The study of model behaviours has only recently
been addressed by introducing the concept of ‘core
prediction’ defined as ‘uniquely identified properties in
unidentifiable models’ [7]. Here, our workflow focus on
the identification and collection of competing distinct
behaviours of the model, thereby enumerating different
but yet possible mechanistic hypotheses relative to a
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Figure 1. Workflow.
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model and data. In contrast, ‘behaviour core predictions’
represent the intersection of all competing hypotheses.
Our setting is ordinary differential equation (ODE)
models, but we hypothesize that our workflow includes
necessary parts for other model classes as well. The work-
flow consists of a set of sequential steps to be satisfied,
hence to initiate step n, all previous ought to be accom-
plished, while still allowing for backtracking, i.e. an
iterative workflow as illustrated in the flowchart
(figure 1). For each step within the workflow we discuss
heuristic insights including useful tools.

Once a model has been formulated the second step in
the workflow targets the parameter estimation problem
using optimization techniques. The outcome of this analy-
sis is a filtered sample of FPS (fsFPS) and their related
behaviours. Both these sets are used in step III to analyse
the different aspects of the PS (such as parameter values
and behaviours) and to generate hypotheses regarding the
dynamics of the system. The fourth step, identifies effi-
cient experimental manipulations to distinguish and
validate the competing hypotheses.

There are several backtracking steps in the workflow
such as revisiting step II whenever there is evidence that
the cardinality of fsFPS is too small. In addition, the inves-
tigator needs to return to step 1 in order to validate the
hypotheses by experimental designs and to use them in
the considerations of putative modification/enlargement/
correction of the model.
3. STEP I. FORMULATION OF A
COMPUTATIONAL MODEL

To develop a model, it is necessary to consider (i) the
biological system under consideration, (ii) the biological
question to be addressed, (iii) experimental data
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available, and (iv) the modelling formalism (ODE,
PDE, or Bayesian modelling). A detailed discussion of
this mixture between science and art is out of our scope
[20]. For our purposes it suffices to employ the middle-
way out modelling approach as initially suggested by
Sydney Brenner et al. [21] and subscribing to the
interpretation of Dennis Noble [22] ‘My interpretation
of the “middle-out” approach is that you start calculating
at the level at which you have the relevant data’.

However, we observe that (i) the number of par-
ameters to be incorporated and biological processes to
be selected need to take into account the trade-off
between the model complexity and the experimental
data available. It is helpful to enumerate all biological
processes relevant in the biological system of interest
and prioritize them by their relevance to the biological
question under consideration. This allows the modeller
to consider which elements are more relevant. (ii) The
representation of the biological processes is a key part;
many researchers consider the use of simplified
dynamics [2], but this can decrease the ability of a
model to explain experimental data. Even if in this
paper we focus on parameter uncertainty, model uncer-
tainty should also ideally be taken into account in the
process of model formulation [9].

For the remainder of the paper we consider an ODE
system as follows:

_x ¼ f ðx; ps; uÞ ð3:1Þ

and

xð0Þ � x0; ð3:2Þ

where ps denotes a parameter set, x0 denotes the initial
conditions and u denotes the external input to
the system.

3.1. Case study: a model of the atherogenesis

The term ‘atherosclerosis’ was introducedbyMarchand to
describe the association of fatty degeneration and vessel
stiffening [23]. Atherosclerosis is characterized by the
accumulation of lipids and fibrous elements in the large
arteries. During the initial phase—atherogenesis—there
is a sub-endothelial accumulation of cholesterol-engorged
macrophages, called ‘foam cells’. Atherosclerosis is con-
sidered a progressive disease where heart attack or stroke
can be induced by thrombosis [24]. Biological experiments
have revealed a critical period where the disease acceler-
ates rapidly [25]. Moreover, these experiments suggested
that a reduction of lipid concentration in the blood
stream is effective in reducing the disease progression, pro-
vided that such lipid reduction is delivered prior to the
onset of the disease.

The current understanding of atherogenesis high-
lights two related key processes. On one hand, the
oxidation of low-density lipoprotein (LDL) at the
intima followed by the formation of foam cells, their
necrosis and posterior plaque formation. On the other
hand, the immune system plays a role through the
action of T-cells and B-cells. We designed a mechanistic
model, A model, that describes the dynamics of athero-
genesis, i.e. the initial development of the plaque, before
any flow dynamics or plaque instability start posing any
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are provided in the electronic supplementary material, part 1.
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risk for the patient. Yet, our precise mechanistic under-
standing how these processes are interconnected is still
in its infancy thus providing us with a realistic case of
uncertainty while we have a solid description of the
model outcome, i.e. the plaque progression over time.

The A model is defined by eight ODEs including
eight SVs and 53 free parameters to characterize their
inputs and interactions. SVs describe the activation of
macrophages (MP), B-cells (Bcells), T-inflammatory
cells (TINF) and T-inhibitory (TINH) cells; the size
of the plaque and the concentrations of oxidated LDL
(oxLDL), LDL and high-density lipoprotein (HDL).
The model is available in C þþ and in SBML (code
MODEL1002160000). A complete study of this model
is out of the scope of this paper and will therefore be
analysed in detail in a separate paper. However, a
more detailed description of the A model (including
parameter ranges) can be found in the electronic sup-
plementary material part 1 and the equations are
displayed in part 2. Figure 2 shows SVs and biological
processes and summarizes the dynamics of the SVs.
Note that x0 ¼ 0, the initial point of the behaviour in
all cases and for all SVs. The unique external input to
the system is the level of LDL in the blood set to 0.
4. STEP II. COLLECTING FEASIBLE SETS
OF PARAMETERS

Once a mathematical model is formulated or given, it is
necessary to perform an unbiased discovery of those sets
of parameters that are ‘feasible’ relative to the exper-
imental data, prior knowledge and research question.
To this end, we need to consider the following three
components in a workflow: (§4.1) how to formalize the
evaluation of a model, (§4.2) how to search through
‘relevant’ parts of the PS and (§4.3) rejection of
certain ‘feasible’ sets of parameters, denoted here as
introducing a filtering procedure.
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4.1. Evaluation of a parameter set

To discover FPS, it is necessary to introduce mathemat-
ical fitness functions formalizing the notion of ‘how
feasible a given set of parameters is’. If parameter
values are within a pre-defined range, the feasibility
of a parameter set p is defined by the behaviours
(beh( p)) of the SVs. On one hand, beh( p) are expected
to agree with available experimental data; on the other
hand, beh( p) are expected to fulfil some expert knowl-
edge criteria (see non-least-squares terms from ‘fuzzy
data’ in [2]).

The evaluation of a parameter set can therefore be
expressed mathematically as

evalðpsÞ ¼
X

i
aifiðbehðpsÞÞ; ð4:1Þ

where each fi denotes a function to be evaluated and ai

denotes its relative weight. The mathematical instantia-
tion of the functions depends on the available
experimental data and expert knowledge. The ensemble
approach proposed by Battogtokh et al. [1] used time-
dependent profiling experiments in which concen-
trations were measured. At each experiment controlled
and quantitatively known experimental conditions
were altered. The eval function was constructed as a
probability function that considered ‘the probability
of observing beh( p) given the experimental data’. In
contrast, Brown & Sethna [2] considered two terms,
the first term considered an L2 distance between the
observed behaviour and the average experimental
behaviour. The second term penalized the violation of
inequalities or other general nonlinear terms that the
model must fulfil. A second penalty term can also be
used as a regularization method adding an extra term
to the cost function, which penalizes deviations of the
parameters from some given nominal values [10]. Regu-
larization adjusts the flexibility of the model [26]. In the
above formulations, the evaluation function is supposed
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to be minimized. However it is possible that a par-
ameter set p can be considered qualitatively accurate
if the evaluation function reaches certain threshold.
This has been used in Brannmakr et al. [7], where the
parameter is explored to obtain sets with a cost below
a threshold. Brannmark et al. [7] claim that they are
‘looking for model properties that are shared among
all these parameter values’. In summary, there are a
number of choices such as the relative weights, nature
of fitness functions, and the interpretation of the sum.
These options determine the theoretical upper limit of
‘feasible’ sets of parameters. The jury is still out on
how these choices should be integrated in a specific
application. In our hands, we find a promiscuous
approach useful in the sense that we use equal weights
and not too tight fitness criteria. The tools for the
analysis of the solutions (§5) will take care of the fact
that the number of solutions identified in practice will
be larger using a promiscuous approach.

All methods previously mentioned are based on the
definition of a priori feasible ranges for each parameter.
However, in many cases that information is not avail-
able. In these cases, it is possible to focus the analysis
on the study of the dynamics (such as in the case
study presented) or to perform preliminary experimen-
tal/computational experiments with the objective to
define an initial PS.
4.2. Search algorithms

The PS must be explored numerically by making use of
the evaluation functions. If the evaluation function is
based on an L2 norm, distance gradient methods
(such as Levenberg–Marquardt) combined with a
Monte-Carlo (MC) search are efficient for the explora-
tion of PS [1,2]. Gradient methods will find local
minima that will depend on the initial value, thus
arguing for combining them with an MC search and
thereby we can expect a reasonable exploration of the
system. However, this combination is not efficient
enough when the evaluation function deviates signifi-
cantly from L2, or when the computational effort
needed to evaluate a given parameter set is prohibi-
tively large and the number of simulations must
therefore be reduced.

In either case black-box meta-heuristics [27] are
useful, since this class of methods search through the
PS in an unbiased manner for those parameter sets
that optimize the evaluation functions. Some of the
most widely used and robust methods include particle
swarm optimization (PSO), Genetic Algorithm, Simu-
lated Annealing and Scatter Search. Yet, the no-free
lunch theorem states [28], that there is no best optimiz-
ation method for all problems. Nevertheless, there are
more flexible methods and less flexible methods. One
possible disadvantage of these methods is that an incor-
rect fine tuning for a specific problem will clearly affect
the quality (error) and number of identified FPS. This
is an area of active research targeting the development
of automatic fine-tuning methods [29].

The problem of parameter estimation of nonlinear
dynamic biochemical pathways by heuristic algorithms
is not new [30]. There are recent studies on the shape of
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the set of the FPS thus providing new insights into the
development of search algorithms using the geometry of
the problem [31]. Interestingly, note that the problem
under consideration is multi-objective as it is defined
by a weighted sum of several evaluation functions
such as the weights ai in equation (4.1) which will
affect the search behaviour in the PS.

Regardless of the selected searching procedure the
output of this step will be a sampling of the feasible
set of parameters (sFPS). In order to assume indepen-
dence between sets in sFPS only the best solution
found in each optimization run is considered for further
analysis. If there is a tie between two solutions one sol-
ution is selected randomly. A different option than
sampling the FPS is to mathematically define the
regions of feasible solutions, that is define the bound-
aries of FPS. An interval analysis and constraint
propagation approach was proposed by Tucker et al.
[32] to identify FPS in systems of ODE. Kuepfer et al.
[33] formulated the identification of the FPS as a feasi-
bility problem and computationally formulated the task
as a relaxation to a semi-definite program. Recently,
Hasenauer et al. [34] extended this idea to identify
FPS in discrete time models of biochemical reaction
networks from time-series data.

The combination of both policies such as reducing
the PS by set-based approaches and optimization
methods to find feasible sets within the reduced PS,
speeds up the process of generating sFPS.

4.3. Filtering

The initial sFPS contains parameter sets that, despite a
low eval, should be rejected. The rational is the follow-
ing: first, since eval is the weighted combination of
several functions (equation (4.1)), a parameter set will
finally be confirmed as feasible only if all its individual
evaluations fi are below a threshold level. Secondly, we
can reject a parameter set based on a residual analysis
[10]. The residual is the difference between the observed
average behaviour (obs) and the predicted simulated
behaviour (beh), i.e. for each data point i for a given
parameter set ps we have

eði; psÞ ¼ obsðiÞ � behði; psÞ: ð4:2Þ

Here, two sufficient criteria for rejection have been
identified. Firstly, provided that the sum of the
residuals is large then eval will reject ps. Secondly
when most of the residuals mimics their neighbours
(e.g. if most simulations lie on the same side of the
experimental data) then ps ought to be rejected as it
does not explain the data correctly [10].

In some studies experimental data are split into two
sets (see [9]). The first set is used to find the parameter
values and the second set is used to validate them.
Those parameter values that fail to predict the second
experimental dataset are rejected. This procedure
avoids parameter over-fitting. However in practice the
number of data points is typically too small for dividing
the dataset.

We denote the filtered sFPS as fsFPS. We will con-
sider from now on the case when the cardinality of
fsFPS is sufficiently large to allow statistical analysis.
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4.4. Case study: feasible sets of parameters for
the atherogenesis model

Here we define an evaluation function, we search
the PS to collect all sFPS followed by filtering and
thereby obtaining fsFPS. The experimental data on
plaque development [25] were transformed into a
parametrized sigmoid function (see the electronic
supplementary material, part 3). We sampled 60 time-
points and a regularization was considered by defining
the final plaque size as 1.

The eval was a weighted linear combination of seven
fitness functions using the behaviours during two differ-
ent conditions: the high LDL (where plaque formation
is expected), and a low LDL regime (where no plaque
is expected) [35,36]. For additional details on the fitness
functions (see the electronic supplementary material,
part 3).

To sample FPS, we used the PSO algorithm. PSO
[37] is an adaptive algorithm based on a social environ-
ment where a population of particles visit different
‘positions’ of a given volume in a space. Particles
move stochastically towards the population’s best fit-
ness position (social knowledge) and the particle’s
own previous best fitness position (cognitive knowledge
or self-knowledge). In this manner the particles of the
population share information of the best volumes to
search. We selected PSO because it is specifically tai-
lored for real-value optimization problems where a
generic ‘black-box’ evaluation function can be defined.
We ran the PSO algorithm several thousands of times
and selected the best evaluated parameter set of each
run. Afterwards we filter this set by setting a quality
threshold for each one of the fitness functions. Over
300 parameter sets were finally selected (fsFPS), repre-
senting less than 21 per cent of the total number of
identified solutions (sFPS).
5. STEP III. EXTRACTION OF ROBUST
MECHANISTIC HYPOTHESES FROM
THE PARAMETER SETS

Here, we aim to identify distinct mechanistic hypoth-
eses residing within an over-parametrized model
constrained by available experimental data. To this
end, the set of fsFPS will be inspected. In particular
we will consider the analysis of fsFPS with respect to
parameter values (§5.1), behaviours in state-space
(§5.2), identification of model behaviours under pertur-
bations of biological interest (§5.3), and §5.4 deals with
the extraction of robust competing hypotheses. The
first three of these topics can be discussed for different
subsets of fsFPS (a single parameter set or an interest-
ing subset of fsFPS), i.e. a region within the PS, or for
the complete volume of parameter sets, i.e. all fsFPS. In
all analyses we consider the model reduction problem
either based on parameter reduction of behaviour
reduction.
5.1. Analysis of parameter sets

A large body of work on local sensitivity analysis
[38–40] has demonstrated the sensitivity of biological
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model to individual parameters. However, even if
recent efforts have been devoted to generate a general
theory of non-equilibrium networks [39], still most of
the analyses concern models described by a unique par-
ameter set. Below we consider the inclusion of
perturbation experiments (both robustness and sensi-
tivity based) in the workflow in order to highlight
common properties among FPS relevant in the biologi-
cal processes. We and others [41,42] and Brannmark
et al. [7] suggest instead a study of the ensemble of poss-
ible solutions which therefore leads us to ask different
questions such as whether there is any structure or stat-
istical dependencies within the fsFPS. Gutenkunst et al.
[3] developed an analysis of the subset of FPS defined as
the best fitted parameter set (bfps) and then, they
explored the surrounding PS by random walks. Hence,
the analysis was limited to a localized region in the
PS. Here the analysis is constrained to the neighbour-
hood of a single FPS (bfps). Repeating the analysis
for all bfps generates a distribution centred around
bfps. The standard deviation of the distribution
provides an estimate of the sensitivity of a parameter.
Additional information can be obtained by analysing
sloppy and stiff directions in the Hessian matrix
around the localized region [3].

To study the FPS by a sole statistical exploration of
all points in fsFPS for a given parameter p will return a
distribution that spreads over most of the original
allowed range, thus limiting its practical use. Corre-
lation and two-dimensional projections of pairs of
parameters can be informative [1] but limited to the
non-linearities inherent to ODE models. However, it is
relevant to observe by simple measures how informative
a parameter can be. To this end, we aim to classify par-
ameters as high spread (HS) or low spread (LS) by
calculating spread ( p)

spreadð pÞ ¼ maxð p; fsFPSÞ �minð p; fsFPSÞ
ubð pÞ � lbð pÞ ; ð5:1Þ

where max and min denote, respectively, the maximum
and minimum value of parameter p in fsFPS and ub
and lb denote, respectively, the upper bound and the
lower bound in the original allowed range. Thus,
spread( p) is the ratio between the difference of the
maximum and minimum value of p in fsFPS and the
difference of the maximum and minimum value of p
allowed. An LS parameter can be considered, after
certain validations [7] as a ‘core prediction’. We hypoth-
esize that (i) parameters in HS parameters could either
be non-relevant (NR) to the dynamics of the model, or
could be correlated with other variables that would lead
to a compensatory mechanism (CM) similar to those
described in Hengl et al. [43]. (ii) Some LS parameters
can be set to a constant value (CV) and they will be
‘core predictions’ as defined in Brannmark et al. [7].
Running new simulations with modified parameter
values and comparing against the original beh(fsFPS)
allows the classification of parameters as NR, CM or
CV, where NR parameters may be omitted, CV para-
meters may be replaced with a CV and CM parameters
may be merged (lumped) without affecting model behav-
iour. The final outcome of this process is a reduced model
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that strengthens the interactions between those elements
that are governing the dynamics.

The progress on the problem of analysing the struc-
ture of FPS is still limited. The reason is that asking
topological questions such as the nature of the connec-
tivity or convexity within the PS are hard [18]. Simple
tools such as clustering have proved to be useful for elu-
cidating the structure of FPS, such as clustering fsFPS
into different sets by k-means, or hierarchical clustering
using a Euclidian distance or using clustering measu-
res (such as Silhouette [44] and Davies–Bouldin [45])
to select a final number of clusters. Principal component
analysis [46] can be deployed to evaluate which par-
ameters are responsible for the characterization of FPS
and to observe the spatial ordering of the clusters in
two-dimensional and three-dimensional plots. An inter-
esting extension would be to analyse the sloppy and
stiff directions [3] in different regions of FPS to evaluate
if they share common characteristics. Note that defining
the boundaries of FPS by set-based approaches such as
[34] will provide detailed analysis of FPS, however
those tools are not always applicable for any model.

5.2. Analysis of the behaviours in state-space

Although parameter analysis is useful, the lack of suffi-
cient experimental data limits the quality of
information that can be obtained. This is particularly
valid for those studies that focus on a single parameter
solution to a model. In such cases, a separate study of
the dynamics of the SVs can provide additional infor-
mation. Moreover, it turns out that a systematic
analysis of the behaviours in state-space is very infor-
mative also when a number of parameter solutions
have been collected using an ensemble approach. Here
we hypothesize that even if the cardinality of fsFPS is
large, the cardinality of the set of their associated beha-
viours (denoted by beh(fsFPS)), will be considerably
smaller because several behaviours will be ‘similar’.
This observation underlies the fact that it is possible to
find a reduced number of mechanistic hypotheses despite
the uncertainty in parameter values. To this end, we
therefore consider the reduction of the model complexity
in order to identify the ‘key dynamics’ of the model.

5.2.1. Reduction of model complexity. A large body of
work has focused on how to reduce the number of SVs
and parameters in a dynamical model [47]. For example,
lumping of an ODE model reduces the system to a set of
differential equations with a smaller set of new SV. Some
of the new SVs correspond to a combination of several
original ones [48]. However, even if new methods are
being developed for automatic lumping [49], this is still
an active research field. Models with large number of par-
ameter sets and low number of SVs can use analytical
techniques to explore patterns in the dynamics which
arise due to timescale separation in the system. In par-
ticular, a method described in Härdin et al. [50] surveys
the behaviour of the system along the so-called slow
invariant manifolds, i.e. curves or surfaces in the phase
space towards which the behaviours in the system are
attracted. This analysis provides the investigator with a
simplified picture of the global behaviour of the system
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dynamics, i.e. behaviour common for a wide range of
initial conditions.

5.2.2. Reduction of model complexity by key behaviours.
With an analysis of the PS and the behaviours of the SVs
as described above we can by reduction begin to dissect
the essential dynamics of the model. This set the stage
for identifying the key different behaviours of the
system. Battogtokh et al. [1] proposed how to analyse
the behaviours for SVs. Cedersund et al. [8] and Brann-
mark et al. [7] developed techniques enabling the
identification of core predictions in a given model. How-
ever, to the best of our knowledge no previous work has
proposed an algorithm for the automatic identification of
all qualitatively different behaviours in FPS.

To this end, we have developed the following pipeline:

— Phase 1. As we are interested in the behaviours and
not in the actual values, behaviours of every SV are
normalized for every parameter set by dividing by
their maximum value. Then all behaviours are 0-1
normalized.

— Phase 2. Afterwards, beh(fsFPS) is clustered for
each SV.

— Phase 3. For each SV, a final number of clusters is
selected.

— Phase 4. Finally, as each cluster defines a maximum
number of qualitative different behaviours for each
SV, then each parameter set will be clustered in
different groups for each SV. It is possible to com-
pute all observed combinations and compare it
against all possible combinations. The set of
observed combinations is the set of qualitative
different behaviours that we denote by ‘key beha-
viours’ (KBs).

To clarify this pipeline we show an example where KBs
are identified in a 2-SV ODE model (figure 3). Figure 3a
shows the behaviours for two SVs, named SV1 and SV2,
in a 2-SV model. For each SV, behaviours are clustered
in 3 and 2 clusters, respectively. Figure 3b displays the
PS and fsFPS where each ps is classified depending on
the clustering for SV2. Next a support vector is computed
to reveal the combination of parameters that separates
both sets. Figure 3c shows all possible combinations of clus-
ters, however it is shown that despite all possible
combinations only few of them have representatives.
Hence, here we can observe a combinatorial reduction of
the inherent complexity in a model: dependencies between
different SV in a model prohibits arbitrary combinations of
key SV behaviours. Hence, in the end, only a subset of com-
binations is allowed and these combinations constitute
distinct and robust mechanistic hypotheses for the
biological system of interest.

5.3. Perturbations of interest

Using the analysis of KBs within a model we can
address how to identify competing mechanistic hypo-
theses (see above). Here, we can further classify the
parameter sets in fsFPS by how they behave under
certain perturbations of interest. This is different to
sensitivity analysis as we are not considering small per-
turbations or robustness analysis but a ‘perturbation of
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Figure 3. An analysis of model behaviour. (a) Two state variables SV1 and SV2 are clustered by the k-mean algorithm. (b) SVM
is used to identify the hyperplane (in parameter space) distinguishing between cluster A and B induced by the state variable SV2.
(c) Number of fsFPS for different combinations of behaviour observed when SV1 and SV2 were analysed simultaneously.
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interest’. A perturbation of interest is defined as a
question that is biologically relevant and that can be
studied through the model. Parameter sets in fsFPS
can be classified according to its behaviour under
these perturbations.

5.4. Identification of hypotheses

A hypothesis can be defined as a proposed explanation
for an observable phenomenon. Therefore any explana-
tory argument regarding the biological system of
interest would be defined as a hypotheses. However, a
hypothesis would be of interest if (i) it allows
validation and (ii) it has some predictive power.

In the models that we consider there are typically
two main types of hypotheses. The first type concerns
the identification and characterization of parameters
of interest. It is possible to generate testable predictions
about how perturbation on those parameters would
affect the behaviour of the model or to specify the
value of a given parameter (such as in core predictions
[7]). Simultaneously, to classify a parameter as relevant
allows one to highlight the relevance of its related bio-
logical processes and the elements ‘ruling’ them.

The second type of hypotheses identifies KBs, which
explicitly provide competitive hypotheses about the
dynamics of the different SV. By using KB a researcher
would be able to provide a (reduced) number of expla-
nations for a given experimental observation. It is also
possible to predict properties of each KB by studying
the sloppy and stiff directions associated to each one.

5.5. Case study: extracting hypotheses within the
atherogenesis model

Following the workflow we first analysed parameter
values in the A model. We evaluated spread( p) over
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fsFPS. We observed the distribution of the measure
for all parameters (see the electronic supplementary
material, part 4); it returns a single low spread par-
ameter and HS values for the rest of the
parameters. The identified outlier is related to LDL
oxidation. Next we analysed fsFPS by clustering the
parameter sets by k-means algorithm [51]. Notably
by this procedure, no relevant Euclidian clustering
was found in fsFPS (see the electronic supplementary
material, part 4). Our conclusion is that it is indeed
hard to extract information from the A model based
uniquely on the PS. We thus turned to analysing
the set of behaviours of the fsFPS for each SV,
denoted by beh (fsFPS., SV), in order to identify
KBs and mechanistic hypotheses. As behaviours are
continuous, we sampled and normalized 60 equally
distant time points for each SV and used this
sample to cluster parameter sets. Figure S6a (in the elec-
tronic supplementary material, part 4) shows beh(fsFPS,
oxLDL), where Figure S6b,c show the 2-mean and 3-
mean clusterings. Figure S6d show clustering evaluation
by using the measures developed by Silhouette [44]
and Davies–Bouldin [45] for k¼ 1,. . ., 5. We repeated
the process and used clustering measures to select
the final number of clusters for each SV. In the A
model we identified one cluster in LDL, HDL, MP
and PLAQUE, two clusters in oxLDL and Bcell
and three clusters in TINF and TINH. The total
number of combinations is 36. Interestingly, despite
the combinatorial explosion, two combinations
captured more than 33 per cent of parameter sets in
FPS (see the electronic supplementary material,
part 4). Those two combinations can be considered
as ‘KBs’. These two are therefore two relevant
hypotheses in plaque development dynamics (see
figures 4 and 5).
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Next we performed a perturbation experiment. From
a biological point of view it is relevant to analyse if the
rapid switch in the disease development is time-depen-
dent with respect to lipid lowering. We aim to answer
this question by lowering LDL-blood at different time
points and with different intensities, and compare the
plaque size at the end of the simulation for each combi-
nation (see figure 6). An interesting result was the
observation of a new grouping of fsFPS in three
Interface Focus (2011)
clusters: (i) plaque size development depends on the
time the perturbation takes place, (ii) it depends also
on the intensity, and (iii) it is totally insensitive to
LDL-blood perturbation (see the electronic supplemen-
tary material, part 4). We integrated all aspects by
using a support vector machine (SVM) algorithm [52]
to identify the vector that separates clusters in the PS
(see the electronic supplementary material, part 4).
Here we identified that biological processes involved in
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Figure 6. Perturbation experiment of interest in A model. x
denotes time and y denotes plaque size. Red line denotes the
plaque behaviour with out perturbation. Blue (1) and green
(2) lines show possible behaviours when LDL is reduced at
different intensities. The interest is to compare the size of
the plaque at the end of the simulation. Large black arrow
denotes the perturbations’ starting point.
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LDL clearance (such as B-cell digestion and the inhi-
bition of TINF cells) are relevant in the differentiation
of the two main KBs.
6. STEP IV: VALIDATION

Here we need to develop methods that enable the identi-
fication of efficient experimental manipulations that are
sufficient to distinguish and validate the competing
hypotheses. The previous analyses on how to use
machine-learning and clustering methods for pin-point-
ing essential SVs provide us with a machinery which
can separate between competing mechanistic hypoth-
eses. Using this line of reasoning we suggest that the
various mechanistic hypotheses put forward by the A
model could be validated experimentally by repeating
the experiments of Skogsberg et al. [25] and measuring
T-cell activation and macrophage activation over time.
Finally, a new experiment could be designed where LDL
is perturbed during plaque progression at different time
points. In contrast, Brannmark et al. [7] and Cedersund
et al. [8] develop an interesting framework where exper-
iments are included in an iterative process that
continuously adds information that can validate or
refute a core prediction.
7. CONCLUDING REMARKS

We have developed a workflow for extracting competing
mechanistic hypotheses from large over-parametrized
models that are designed to capture the known or poss-
ible interactions between processes, but which suffer
from limited available prior knowledge and experimen-
tal data. This method addresses this uncertainty by
considering a sample of the FPS and by characterizing
and clustering them. The main idea is, on one hand, to
merge and organize available model analysis
frameworks in the literature and, on the other hand,
to automatize the classification and generation of
model-based hypotheses.

We verified the proposed workflow using the A
model of atherogenesis. This allowed us to identify
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KBs of the SVs governing the development of the ather-
osclerotic plaque. We could do this despite challenges
such as the high dimensionality of the PS, the strong
parameter uncertainty and the potential combinatorial
complexity in the number of solutions. Interestingly, we
observed a surprisingly small number of classes of com-
peting hypotheses that were consistent with the
experimental data. The reduced number of model beha-
viours provides us with a few testable hypotheses on the
mechanisms for the rapid increase in atherosclerotic
plaque at a given time in disease development [25].

Yet, our outline of a workflow is a first step where
there are several parts that can be further improved in
future studies of computational models of increasing
complexity. Areas for additional research include
the optimization procedure, selection of KBs and, to
generalize the workflow to enable its use for a broader
set of models.
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