Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory
X-J Wang, J. Tegnér, C. Constantinidis, and P. Goldman-Rakic
Proceedings of National Academy of Science 101:1368-1373, 2004
A conspicuous feature of cortical organization is the wide diversity of inhibitory interneurons; their differential computational functions remain unclear. Here we propose a local cortical circuit in which three major subtypes of interneurons play distinct roles. In a model designed for spatial working memory, stimulus tuning of persistent activity arises from the concerted action of widespread inhibition mediated by perisoma-targeting (parvalbumin-containing) interneurons and localized disinhibition of pyramidal cells via interneuron-targeting (calretinin-containing) interneurons. Moreover, resistance against distracting stimuli (a fundamental property of working memory) is dynamically controlled by dendrite-targeting (calbindin-containing) interneurons. The experimental observation of inverted tuning curves of monkey prefrontal neurons recorded during working memory supports a key model prediction. This work suggests a framework for understanding the division of labor and cooperation among different inhibitory cell types in a recurrent cortical circuit.
DOI: 10.1073/pnas.0305337101
"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."
King Abdullah bin Abdulaziz Al Saud, 1924 – 2015
Thuwal 23955-6900, Kingdom of Saudi Arabia
© King Abdullah University of Science and Technology. All rights reserved