Low-algorithmic-complexity entropy-deceiving graphs

by H. Zenil, N.A. Kiani, J. Tegnér
Year:2017

Bibliography

Low-algorithmic-complexity entropy-deceiving graphs
H. Zenil, N.A. Kiani, J. Tegnér
Phys. Rev. E 96, 012308, 2017

Abstract

​In estimating the complexity of objects, in particular, of graphs, it is common practice to rely on graph- and information-theoretic measures. Here, using integer sequences with properties such as Borel normality, we explain how these measures are not independent of the way in which an object, such as a graph, can be described or observed. From observations that can reconstruct the same graph and are therefore essentially translations of the same description, we see that when applying a computable measure such as the Shannon entropy, not only is it necessary to preselect a feature of interest where there is one, and to make an arbitrary selection where there is not, but also more general properties, such as the causal likelihood of a graph as a measure (opposed to randomness), can be largely misrepresented by computable measures such as the entropy and entropy rate. We introduce recursive and nonrecursive (uncomputable) graphs and graph constructions based on these integer sequences, whose different lossless descriptions have disparate entropy values, thereby enabling the study and exploration of a measure's range of applications and demonstrating the weaknesses of computable measures of complexity.

DOI: 10.1103/PhysRevE.96.012308

Low-algorithmic-complexity entropy-deceiving graphs.pdf


Keywords

Computational complexity Algorithmic complexity Entropy rates Information theoretic measure
KAUST

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

     

Quick links

© King Abdullah University of Science and Technology. All rights reserved