Without loss of generalisation to other systems, including possibly non-deterministic ones, we demonstrate the application of methods drawn from algorithmic information dynamics to the characterisation and classification of emergent and persistent patterns, motifs and colliding particles in Conway's Game of Life (GoL), a cellular automaton serving as a case study illustrating the way in which such ideas can be applied to a typical discrete dynamical system. We explore the issue of local observations of closed systems whose orbits may appear open because of inaccessibility to the global rules governing the overall system. We also investigate aspects of symmetry related to complexity in the distribution of patterns that occur with high frequency in GoL (which we thus call motifs) and analyse the distribution of these motifs with a view to tracking the changes in their algorithmic probability over time. We demonstrate how the tools introduced are an alternative to other computable measures that are unable to capture changes in emergent structures in evolving complex systems that are often too small or too subtle to be properly characterised by methods such as lossless compression and Shannon entropy.
"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."
King Abdullah bin Abdulaziz Al Saud, 1924 – 2015
Thuwal 23955-6900, Kingdom of Saudi Arabia
© King Abdullah University of Science and Technology. All rights reserved