On reliable discovery of molecular signatures

by R. Nilsson, J. Björkegren, J. Tegnér
Year:2009

Bibliography

On reliable discovery of molecular signatures
R. Nilsson, J. Björkegren and J. Tegnér
BMC Bioinformatics, 10:38, 2009

Abstract

​Background: Molecular signatures are sets of genes, proteins, genetic variants or other variables that can be used as markers for a particular phenotype. Reliable signature discovery methods could yield valuable insight into cell biology and mechanisms of human disease. However, it is currently not clear how to control error rates such as the false discovery rate (FDR) in signature discovery. Moreover, signatures for cancer gene expression have been shown to be unstable, that is, difficult to replicate in independent studies, casting doubts on their reliability. Results: We demonstrate that with modern prediction methods, signatures that yield accurate predictions may still have a high FDR. Further, we show that even signatures with low FDR may fail to replicate in independent studies due to limited statistical power. Thus, neither stability nor predictive accuracy are relevant when FDR control is the primary goal. We therefore develop a general statistical hypothesis testing framework that for the first time provides FDR control for signature discovery. Our method is demonstrated to be correct in simulation studies. When applied to five cancer data sets, the method was able to discover molecular signatures with 5% FDR in three cases, while two data sets yielded no significant findings. Conclusion: Our approach enables reliable discovery of molecular signatures from genome-wide data with current sample sizes. The statistical framework developed herein is potentially applicable to a wide range of prediction problems in bioinformatics.

DOI: 10.1186/1471-2105-10-38

On reliable discovery of molecular signatures .pdf

Keywords

Accurate prediction Cancer gene expression False discovery rate Molecular signatures Predictive accuracy Signature discovery Statistical framework Statistical hypothesis testing
KAUST

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

     

Quick links

© King Abdullah University of Science and Technology. All rights reserved