We analyze two different feature selection problems: finding a minimal feature set optimal for classification (MINIMAL-OPTIMAL) vs. finding all features relevant to the target variable (ALL-RELEVANT). The latter problem is motivated by recent applications within bioinformatics, particularly gene expression analysis. For both problems, we identify classes of data distributions for which there exist consistent, polynomial-time algorithms. We also prove that ALL-RELEVANT is much harder than MINIMAL-OPTIMAL and propose two consistent, polynomial-time algorithms. We argue that the distribution classes considered are reasonable in many practical cases, so that our results simplify feature selection in a wide range of machine learning tasks.
Consistent feature selection for pattern recognition in polynomial time.pdf
"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."
King Abdullah bin Abdulaziz Al Saud, 1924 – 2015
Thuwal 23955-6900, Kingdom of Saudi Arabia
© King Abdullah University of Science and Technology. All rights reserved