We introduce a definition of algorithmic symmetry able to capture essential aspects of geometric symmetry. We review, study and apply a method for approximating the algorithmic complexity (also known as Kolmogorov-Chaitin complexity) of graphs and networks based on the concept of Algorithmic Probability (AP). AP is a concept (and method) capable of recursively enumeration all properties of computable (causal) nature beyond statistical regularities. We explore the connections of algorithmic complexity---both theoretical and numerical---with geometric properties mainly symmetry and topology from an (algorithmic) information-theoretic perspective. We show that approximations to algorithmic complexity by lossless compression and an Algorithmic Probability-based method can characterize properties of polyominoes, polytopes, regular and quasi-regular polyhedra as well as polyhedral networks, thereby demonstrating its profiling capabilities.
Symmetry and algorithmic complexity of polyominoes and polyhedral graphs.pdf
"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."
King Abdullah bin Abdulaziz Al Saud, 1924 – 2015
Thuwal 23955-6900, Kingdom of Saudi Arabia
© King Abdullah University of Science and Technology. All rights reserved